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 Abstract 

How altruistic behavior evolves despite its evolutionary cost 
is still an intriguing question. Using Neural Network and 
Gradient descent algorithms, we proposed a mixed 
computational model of fitness competition among three 
artificial agents(predator, altruistic prey, recipient prey), in the 
zero-sum game environment. We found that altruism emerged 
without direct reciprocity when the predator invested in 
altruism aiming to use prey’s altruistic behavior as “bait” to 
fish more prey. For the decisive factor of this mechanism, we 
demonstrated that the long-term decision-making of a 
predator enhanced its investment in prey's altruistic behavior, 
which leads to a significant increase of altruism and fitness in 
altruistic prey. We interpreted our findings from economic, 
evolutionary, and psychological perspectives, connecting 
zero-sum economies, K-selection, and third-party emotional 
decision-making to the emergence and maintenance of 
altruistic behavior. 

Keywords:  altruism; long-term decision-making; 
cooperative hunting; Prey-Predator model; zero-sum game; 
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 Introduction 
The evolution of altruism is a perplexing problem of 
biology, anthropology, psychology, and cognitive science; 
altruistic behavior enhances inclusive fitness by providing 
reproductive success to an organism’s relatives(Hamilton, 
1964). However, non-kin altruism directly leads to the loss 
of evolutionary fitness while increasing others’ fitness, not 
genetically related to the donor of altruism (Trivers, 1971). 
Nevertheless, various prosocial and highly intelligent animal 
species such as humans, primates, and even some bird 
species have a high quality of non-kin altruistic nature; 
altruism even composes the fundamental principles of ethics 
in human culture.  

To answer the complex question of altruism, reciprocal 
altruism theory (Trivers, 1971), competitive altruism 
(Alexander, 1987), and Costly Signaling Theory (Zahavi, 
1975) were presented to explain the widespread altruistic 
nature regardless of its cost. Above all, reciprocal altruism 
theory, combined with computational modeling research 
methods (Axelrod & Hamilton, 1981), has been the main 

hypothesis of the universal evolutionary and cognitive 
mechanism of altruism. This theory represents altruism can 
be evolved since the recipient of altruism compensates the 
loss of altruism with giving altruistic behavior back at a 
later  

 
 
Figure 1: Description of model structure. The top and 
middle figures depict the agents’ mobility and altruism. The 
bottom figure describes fitness score exchanges among 
agents. 
 
time, or 3rd party’s altruism compensates it (Roberts, 2008). 
The existence of reciprocity is attempted to be explained 
with 3rd party punishment (Fehr & Gächter, 2000): This 
model based on game theory suggested that altruism 
evolved when altruistic behavior leads to more efficient 
results (e.g. cooperative hunting), and free-riders of altruism 
or public goods must be punished by 3rd parties in the 
society. However, there were numerous unsolved problems: 
3rd party punishment is costly and risky (Barclay, 2006), 
and altruism only can be evolved when the efficiency of 



public goods is higher than 1. Furthermore, the existing 
mathematical and agent-based model does not explain the 
effect of cognitive abilities on the emergence of altruism.  

Innate mental factors which affect altruistic behavior were 
also investigated with psychological and neurological 
research methods. Based on the somatic marker hypothesis 
(Damasio, 1985), Psychological theories have been 
suggested that emotions based on physical factors including 
neural mechanisms have an important influence on decision-
making rather than logical cost-benefit computations 
(Schwarz, 2000; Lerner et al., 2015). It has been found 
through neural and behavioral response experiments that 
emotion acts as an important factor not only in moral 
decision-making closely related to altruism (Naqvi et al., 
2006), but also in economic decision-making that judges the 
expected material costs and benefits (Sanfey et al., 2003); 
These emotions were interpreted as empathy(Batson et al., 
1991), or expectations for emotional rewards such as praise, 
gratitude, and intimacy returned by the recipient (Batson & 
Shaw, 1991; Barasch et al., 2014).  

These psychological and neuroscientific findings provide 
the insight that altruistic behavior is not determined solely 
by the immediate cost-benefit given in the external 
environment, but is caused by innate and long-term 
cognitive strategies, such as the emotions of altruistic 
behavior actors. However, these theories of psychology and 
neuroscience do not provide a sufficient explanation for 
why evolutionary fitness remains stable due to intrinsic 
cognitive factors involved in altruism, such as emotions.  

To solve these questions in computational biology and 
psychology, cognitive modeling using multi-agent artificial 
intelligence systems, which combines psychological insights 
about cognitive capacity into computational research 
methods, has been introduced as a new research 
methodology (Yong, 2001; Ueda, 2004). Recently, various 
machine learning algorithms are designed for imitating the 
human cognition structure; unsupervised reinforcement 
learning algorithms are actively used for structuralizing 
cognition and decision-making in social dilemmas (Leibo et 
al., 2017; Hughes et al., 2018).  

In this manner, research methods using Neural Network 
and reinforcement learning are applied to the altruism 
problem to figure out the problem with the cognitive 
approach (Zhao, 2012; Wang, 2019; Hostallero et al., 2020). 
These machine learning-based researches figured out the 
principles of altruistic decision-making facilitated when 
expecting the recipient’s reciprocal behavior. This approach 
has a limitation of implementing reciprocal altruism and 3rd 
party punishment to cognitive abilities such as complex 
decision-making; this did not present the new solution of 
altruism problem with cognitive factors or the model other 
than reciprocal altruism.  

In this study, we suggest a new model for investigating 
how altruism evolves, replacing the 3rd party punishment to 
the 3rd party investment from predator to a prey species, 
postulating the ecological resource as zero-sum. 
Furthermore, we applied the mixed methodology with 

Neural Network and gradient descent algorithm, to optimize 
the fitness of agents. Neural Network is used to model the 
long-term decision-making cognitive factor inversely 
proportional to the sensitivity to environmental change. 
Gradient descent algorithm is used to model the 
instantaneous modification of behavioral strategies, aiming 
to optimize agents’ fitness. 

 Methods 

 Models 
We constructed a simplified ecological model which 
imitates the real-world situation that one predator has to 
decide whether to prefer prey as altruists or prey who only 
receives the benefits from other prey’s altruistic behavior; 
gathers around altruists but returns nothing. The model 
contains three agents, corresponding to one predator, and 
two prey (altruistic prey and recipient prey).  

Each agent aims to maximize its fitness score; the agent 
spontaneously modulates behavioral factor values (e.g. 
investment ratio to altruism) to enhance the score 
corresponding to the environmental conditions given by 
other agents. We constructed a predator agent as a Neural 
Network agent with Stochastic Gradient Descent algorithm 
to examine the effect of long-term decision-making capacity 
on the emergence of altruistic behavior. Prey agents were 
designed as computational equations with Gradient Descent 
Algorithm. 
 
 Predator System Structure We designed the zero-sum 
prey-predator system model which represents the ecological 
situation where one species of predator and two species of 
prey are competing with each other to maximize their 
fitness, in the closed energy system. Two virtual spaces(I, II) 
are given: altruistic prey (“Altruist”) is fixed to space I, and 
can give benefit to recipient prey (“Recipient”) only when 
the Recipient is in the same space. Recipient can decide its 
location with the probability of being located in space I. The 
predator (“Predator”) also can modulate its probability of 
being located in space I and reward Altruist proportional to 
the quantity of altruistic behavior. 
  
 Fitness Score Calculation Each agent aims to maximize 
the value of the fitness score equivalent to its survival and 
evolutionary success. The fitness score of Altruist, 
Recipient, and Predator is described as follows: 

 
 
 

 
 

Table 1: Variables of fitness score equations 
 

Variable1 Meaning 
 

1 All values of variables are greater than or equal to 0, and 
smaller than or equal to 1. 



F(Agent) Fitness Score of agent. 
q Quantity of altruism from 

Altruist to Recipient. 
lAgent The probability that the 

agent is in space I. 
w Quantity of reward from 

Predator to Altruist. 
 

  
 
Figure 2: Sample architecture of fully-connected Neural 
Network of the Predator agent. This sample Neural Network 
has a pair of 4 output neurons; for instance, the 8th output 
neuron’s value represents Predator’s w value after 3 time 
steps from the input. 
 
 Neural Network To investigate whether Predator’s long-
term decision-making enhances the emergence of Altruist’s 
altruistic behavior, we used a fully connected Neural 
Network as a Predator agent. This Neural Network has an 
input layer with two inputs (q, lR), one hidden layer with 32 
neurons with activation function as ReLu, and an output 
layer, with activation function as sigmoid function. The 
output layer has the number of neurons equivalent to the 
doubled value of the series of future actions, ranging from 
23 to 210. Half of the output neurons decide the lP value of 
the Predator, and the other half decide the w value of 
Predator. Each output value from the neurons, at respective 
time steps, designates lP value or w value. The number of 
output neurons is equivalent to the time-length of future 
actions (behavioral strategies) from given inputs. 

We used the Stochastic Gradient Descent optimizer 
provided by Keras open-source library (Chollet et al., 
2021)2, postulating maximizing Predator's fitness score as 
the goal of Neural Network optimization. In the optimizer, 
Predator's Neural Network was updated 10 times through 
the following process: the weight values of the Neural 
Network were designated as variables. In addition, setting 
the initial q value and lR value to 0, the average of the 

 
2https://github.com/keras-team/keras/blob/master/keras/ 

optimizers.py#L157 

predator's fitness score during 512 time steps of the 
simulation in which the three agents interacted together was 
designated as a target function. Among the 10 updates, the 
weight value of the neural network that generated the 
highest average fitness score was extracted; the output 
values calculated in the state of the Neural Network at this 
time were collected as samples of output values 
corresponding to the experiment results.  
 

The hyperparameters of this Neural Network and 
optimizer are as follows: 

Table 2: Hyperparameters 
 

Hyperparameter Value 
Learning rate 0.001 
Momentum 0 
Decay 0 
Nesterov momentum false 
Input domain float between 0 and 1 
Weight Initialization 0 for all weights 

 
 Prey Models Models of Altruist and Recipient are 
constructed with a gradient descent algorithm. Each model 
computes the differential value of fitness by its score 
variables. Then, the agent adds the differential value 
multiplied by the learning rate (η = 0.2) to the score 
variable. This computation updates the latest fitness score. 
The model formula is constructed as follows:  

 

 Experiment Procedure 
We computed the simulation experiment with 8-level long-
term decision-making conditions, 512 time steps, and 500 
trials to measure changes of agents’ fitness scores, location, 
altruism, and reward to altruistic behavior by the degree of 
the long-term behavioral strategy of Predator.  
 

 
Figure 3: Examples of Neural Network decision-making that 
varies depending on the degree of future actions time-length 
(x). The red arrow represents the time that the Neural 
Network takes the input value, and the green dot represents 
the time that the neural network decides the future 



behavioral strategies (lP, w) within the time-length (x). Time 
step (t) is limited to 512; the number of changes in 
behavioral strategies is inversely proportional to x. 

Agents changed their behavior in 512 time steps. Levels 
of long-term decision-making conditions were divided into 
8 conditions, from 22 (with 27 strategies) to 29 (with a single 
behavioral strategy) with a geometric progression of 2. 

We optimized the Predator’s neural network 10 times, 
selected the most optimized neural network, and measured 
the result that the network finally adjusted the six variables 
of three agents: F(A), F(R), F(P), lR, q, and w. We repeated 
the computation 500 times and obtained the average values. 

 Results 
Effect of long-term decision-making level (time-length of 
future actions, x) and six variables (F(A), F(R), F(P), , q, 
and w) was computed in the zero-sum condition. First, we 
examined Altruist’s quantity of altruistic behavior(q) by the 
time-length conditions of Predator’s decision-making. There 
was no significant altruistic behavior in the conditions of 
Predator’s “short-term” decision-making (q=5.93E-05 when 
x=22; q=0.0002 when x=23; q=0.008 when x=24). However, 
after the transition period(x=25; q=0.227, std = 0.198), the q 
value significantly increased and the maximum q value 
recorded q=0.352 (std = 0.071) when x=22. There was a 
significant decrease of altruism value when x=29 (q=0.145, 
std = 1.49E-08), which is an extreme condition that the  
Predator agent only can take a single behavioral strategy. 

 
 
Figure 5: Fitness score of Altruist (F(A)) significantly 
enhanced when time-length of future actions (x) was over 
25, while fitness score of Recipient (F(R)) significantly 
decreased at the same condition, despite enhancement of 
altruistic behavior (q).  

 
 

 

 
 
Figure 4: Altruism(q) significantly enhanced when 
time-length of future actions(x) was over 25. 

 
 
Altruistic behavior instantaneously reduces an Altruist's 

fitness score; Predator’s long-term decision-making made 
altruistic behavior adaptive to Altruist, even compared to 
Recipient. F(A) significantly increased from -1 (std = 0.006, 
x=22) to -0.691 (std = 0.043, x=28), while F(R) decreased 
from 0(std = 0.002, x=22) to -0.32 (both except when x=29). 
Furthermore, in the extreme condition when x=29, F(A) 
increased to -0.573 (std = 5.96E-08) and F(R) decreased to -
0.43 (std = 2.98E-08).  

We did not postulate the initial value of fitness scores as 
F(A)=-1 and F(R)=0; F(A) is computed as -1 when q=0 
because all portion of Altruist is hunted by Predator since 
 

 
F(A), is equivalent to , q=0 and =1. In the same condition, 
F(R)=0 since , q=0 and lR=0. The difference of baseline 
between F(A) and F(R) is occurred by initial environmental 
inequity between two agents; Altruist cannot avoid 
predation since the location of Altruist is constantly fixed to 
space I(lA = 1), however, Recipient can modulate the value 
of  to maximize its fitness score, regarding avoiding 
predation and taking altruistic benefits from Altruist. 

There was a clear loss of fitness score of Altruist caused 
by the expense from altruistic behavior, however, altruism 
was adaptive because Predator gave rewards to altruistic 
behavior, which is represented as w. There was no 
significant compensation of altruistic behavior to Altruist in 
the condition of the lower level of long-term decision 
making (w=1.158E-06 when x=22, w=3.879E-06 when x=23, 
w=0.001 when x=24). However, after the x=25 transition 
period  (w=0.202, std = 0.243), the w value significantly 
increased and remained approximately 0.5, even in the 
extreme condition when x=29 (w=0.495, std = 5.96E-08). 

Like the altruistic behavior of Altruist, the reward from 
Predator to Altruist also was a significant factor that reduces 
Predator’s fitness score. F(P) increased when x was higher 
than 25, which were the conditions that Predator invested w 



value approximately 0.5. Maximum F(P) was 1.011 when 
x=28, though the score remains F(P)=1 when x was under 
the transition period (x < 25). However, there was a 
significant decrease in F(P) when x=29 (w=0.145, std = 
1.49E-08). 

Increased F(P) in Predator’s long-term decision-making 
conditions indicated that giving a reward to Altruist is 
adaptive to Predator despite the loss of fitness score driven 
by the expense of w. The fitness of the Predator appears to 
be compensated by the increase of lR while x value 
increased; an  

 
 
Figure 6: Predator’s reward to Altruist (w) significantly 
enhanced when time-length of future actions (x) was over 
25,  coinciding with the period of a significant increase in 
altruistic behavior (q). 
 

 
Figure 7: Fitness score of Predator (F(P)) significantly 
enhanced when time-length of future actions (x) was over 
25, despite the increase of reward to Altruist (w).  
 
increase in lR makes prey gather to the same space and gives 
more amount and certainty of predation.  

Recipient did not share location with Altruist when x was 
under the transition period (lR = 0 when x=22 or x=23; lR = 

0.001, std=0.016 when x=24); Maximum lR recorded 0.362 
(std=0.034) when x=26, right after the transition period. 

 Discussion 
We found long-term decision-making of the Predator affects 
the significant increase of altruistic behavior of prey agents 
(Altruist), by encouraging Predator to invest in altruism. 
From the experiment results, we figured out altruism (q), 
investment to Altruist (w), the fitness of Altruist and 
Predator (F(A), F(P)) significantly increased only when the 
Predator  

 
 
Figure 8: Recipient’s probability to be in space I (lR) 
significantly enhanced when time-length of future actions(x) 
was over 25, which coincides with the period of the 
significant increase in altruistic behavior (q), and also the 
period of the significant increase in Predator’s investment to 
altruism (w). 
 
had cognitive ability to make decisions in the long-term 
time-length (x > 25). 

The result is interpreted as the mechanism as follows: 
Predator invests to altruistic prey’s altruistic behavior, then 
altruistic prey enhances altruistic behavior to get the reward 
from the predator; the reward can be interpreted as a direct 
reward or lower probability of being predated. recipient prey 
is gathered to the surrounding location of Altruist to get the 
incentives of altruistic behavior of other prey. Therefore, the 
predator gets the benefit because prey are gathered at one 
location, which can be interpreted as lowered uncertainty of 
the hunting task. 

This mechanism indicates that altruism is used as “bait”  
to reduce the spatial uncertainty of prey in hunting. Also, in 
the perspective of altruists, altruism is used as a behavioral 
strategy that seduces the free-rider to be exposed to higher 
predation risk and reduces the risk of predation pressure. 
Because this model environment is a zero-sum closed 
energy system, the Recipient's fitness score decreased when 
Altruist and Predator increased their benefit from the bait-
altruism strategy. This can be interpreted as cooperative 
hunting between Predator and Altruist: “fishing free-rider”, 



using altruism as bait. Therefore, unlike the existing theory 
of reciprocal altruism, our model suggests an evolutionary 
mechanism of altruism that is indirectly disadvantageous to 
free-riders, and gives reward to altruism through 3rd party 
investors. 

Furthermore, using the zero-sum energy environment 
model, we showed that altruism emerges even in the social 
or ecological environment where the additional energy or 
economic income is not continuously supplied from the 
external system. Our findings imply that altruism can 
emerge even when there is no economic growth, or in an 
isolated environment.  

We also found that long-term decision-making is the key 
factor of altruistic behavior. This provides insights into both 
the evolutionary origins and psychological basis of altruism. 
First, we can interpret long-term decision-making as the 
long generation time of a species, and modification of 
behavioral strategy as changes in gene pool composition of 
behavioral traits by natural selection. In this perspective, 
species that have longer generation time to reproduce 
offspring, and consequently have slower genetic adaptation 
to the environment would lead to the evolution of altruistic 
behavioral traits. According to r/K selection theory (Pianka, 
1970), at K-selection with less quantity and more quality of 
offspring, which the survival and reproduction strategy 
adaptive when higher stability of the environment, animal 
species have linked attributes containing longer life 
expectancy and generation time, longer growth period and 
parental care and consequential higher intelligence 
(Rushton, 2004). In this manner, altruism might not be the 
consequence of higher intelligence (Millet & Dewitte, 
2007); both altruism and higher intelligence would have 
occurred from a longer lifespan, originated from a stable 
environment.  

Second, our findings investigated that altruists do not 
need long-term decision-making, but rather its sponsor’s 
(Predator in our model) long-term decision-making capacity 
supports altruism and acts as an important factor in 
generating altruistic behavior. In our model, Altruist 
instantaneously decided whether to perform altruistic 
behaviors regarding external information such as cost and 
benefit; in order for altruism to evolve, the motivation of 
sponsors who support the altruists would be based on 
intrinsic and long-term emotions rather than spontaneous 
reactions to external stimuli. This suggests that, in addition 
to the cognitive factors of altruists, the cognitive factors of 
3rd parties involved in altruism play an important role for the 
conditions of the emergence of altruism. For instance, the 
emotional and cognitive attributes of laities who feel 
religious awe to the clergies (Prade & Saroglou, 2016), can 
be a crucial factor in maintaining altruistic behavior of 
clergies. 

However, our experiment results also showed that if these 
sponsors' trust is overly consistent such as not changing at 
all once determined, another "free-riding" in which altruists 
deceive and exploit sponsors by performing less altruistic 
behavior while taking continuous benefit from sponsors. 

Under the condition of x=29 where the Predator minimized 
the modifications of the behavioral strategy in the Neural 
Network, the predator maintained a high value that gives 
reward for Altruist's altruistic behavior. At this time, Altruist 
maximized its own fitness score by reducing altruistic 
behavior according to the instantaneous cost and benefit 
calculation. As a result, the fitness score of the Predator 
decreased to a lower level than the transition period. This 
suggests that appropriate time intervals of updating reward 
policy for altruistic behavior, as well as long-term decision-
making, are required to maintain altruism. 

The current study leaves collateral parametric effects and 
comparison among technical conditions unexplored; in 
future research, we suggest the reward from Predator to 
Altruist to expand to Neural Network, to precisely figure out 
the correlation and causality between reward policy and 
altruistic behavior. In the current research, the learning rate 
of prey agents was fixed to 0.2; the effect of learning rate on 
altruism should be examined. Furthermore, future studies 
may expand our model simulations to wider ranges of 
various machine learning techniques such as DNN, Genetic 
Algorithm, and Reinforcement Learning to explore how the 
evolution of altruism differ by algorithmic attributes of 
artificial intelligence agents. 
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